A QUOTIENT OF $C(\omega^{\omega})$ WHICH IS NOT ISOMORPHIC TO A SUBSPACE OF $C(\alpha)$, $\alpha < \omega_1$

BY DALE E. ALSPACH[†]

ABSTRACT

A quotient space of $C(\omega^{\omega})$, the continuous functions on the ordinals not greater than ω^{ω} with the order topology, is constructed which is not isomorphic to a subspace of $C(\alpha)$, $\alpha < \omega_1$.

§0. Introduction

Johnson and Zippin [4] have shown that a quotient of c_0 is isomorphic to a subspace of c_0 . (See also [1].) This and the fact that a quotient of C[0,1] is isomorphic to a subspace of C[0,1] gives rise to the question of whether or not this is a general property of separable C(K) spaces, i.e., if X is a quotient of C(K), for some compact metric space K is X isomorphic to a subspace of C(K). A positive answer to this question would have shed additional light on the problem of classifying the complemented subspaces of C[0,1] in view of the fact that each complemented subspace of C[0,1] is a quotient of $C(\alpha)$, for some $\alpha < \omega_1$, or is isomorphic to C[0,1], [2].

In §1 of this paper we show that there is a quotient X of $C_0(\omega^{\omega})$ which is not isomorphic to a subspace of $C(\alpha)$, for any $\alpha < \omega_1$. In addition, X is not isomorphic to a complemented subspace of any C(K) space and X^* is isometric to l_1 .

We will use standard Banach space notation as may be found in [5]. If α is an ordinal, $C(\alpha)$ (resp. $C_0(\alpha)$) denotes the space of continuous functions on the ordinals not greater than α with the order topology (resp., and vanishing at α). We will denote the α th derived set of a topological space K by $K^{(\alpha)}$.

[†] Supported in part by NSF-MCS 7610613. Received September 15, 1978

Finally, we will without further comment consider elements of the spaces $C(\alpha)^*$, $\alpha < \omega_1$, as either functions defined on the ordinals or as measures.

§1. Our quotient space X of $C_0(\omega^{\omega})$ will be a c_0 sum of quotients X_n of $C(\omega^{2n})$, $n = 1, 2, \cdots$. The following procedure is basic to the definition of X_n .

Let x be an element of the unit sphere of $l_1(\omega^n) = C(\omega^n)^*$, for some integer n, and suppose that

supp
$$x \subset [1, \omega^n]^{(m)} - [1, \omega^n]^{(m+1)}, \qquad m \ge 2.$$

Let $\{N_i: i=1,2,\cdots\}$ be a partition of N into infinite sets, let $\{y_{2j+1}: j=1,2,\cdots\}$ be a norm dense set in the probability measures on $[1,\omega)$ such that the support of y_{2j+1} is finite for each j, and let $y_{2j}=e_j$, the jth vector of the usual unit vector basis of l_1 . Define

$$x_{i(1)}(\alpha) = \begin{cases} x(\beta + \omega^m) y_{i(1)}(k) & \text{if } \alpha = \beta + \omega^{m-1} k, \text{ for some} \\ \beta \in [1, \omega^n]^{(m)} \cup \{0\}, \\ 0 & \text{otherwise,} \end{cases}$$

 $i(1) = 1, 2, \cdots$. Also for each i(1), define elements $x_{i(1)i(2)}$, $i(2) = 1, 2, \cdots$ by

$$x_{i(1)i(2)}(\alpha) = \begin{cases} x_{i(1)}(\beta + \omega^{m-1}) & \text{if } \alpha = \beta + \omega^{(m-2)}k \text{ where} \\ \beta \in [1, \omega^n]^{(m-1)} \text{ and } k \text{ is the} \\ i(2)\text{th element of } N_{i(1)}, \\ 0 & \text{otherwise.} \end{cases}$$

Observe that $||x_{i(1)}||_1 = ||x_{i(1)i(2)}||_1 = 1$, $w * \lim_{i(2) \to \infty} x_{i(1)i(2)} = x_{i(1)}$, and if y is a w * cluster point of $\{x_{i(1)i(2)} : i(1), i(2) = 1, 2, 3, \dots\}$ then

$$y \in \overline{co}(\{x_{i(1)}: i(1) = 1, 2, \dots\} \cup \{x\})$$

= $\overline{co}(\{x_{i(1)}: i(1) = 2, 4, 6, \dots\} \cup \{x\}).$

To define X_1 , we take m = n = 2 and $x = \delta_{\omega^2}$. Then $x_{2l} = \delta_{\omega l}$, $l = 1, 2, \dots$, each of the measures $x_{i(1)i(2)}$ is supported in $\{\omega k + l : l \in N_{i(1)}, k \in \mathbb{N}\}$ and

$$x_{i(1)i(2)}(\omega k + l) = \begin{cases} x_{i(1)}(\omega(k+1)) & \text{if } l \text{ is the } i(2) \text{th element of } N_{i(1)}, \\ 0 & \text{otherwise,} \end{cases}$$

$$k = 0, 1, 2, \cdots$$

Note that supp $x_{i(1)i(2)} \cap \text{supp } x_{i(1)'i(2)'} = \emptyset$ if $(i(1), i(2)) \neq (i(1)', i(2)')$. Let

$$Y_1 = \overline{\text{span}} \left(\left\{ x_{i(1)i(2)} : i(1), i(2) = 1, 2, \cdots \right\} \cup \left\{ x_{i(1)} : i(1) = 1, 2, \cdots \right\} \cup \left\{ x \right\} \right)$$

and X_1 be the predual of Y_1 , i.e., if $(Y_1)_{\perp} = \{ f \in C(\omega^2) : \langle y, f \rangle = 0 \text{ for all } y \in Y_1 \}$, then $X_1 = C(\omega^2)/(Y_1)_{\perp}$. It is easy to see that Y_1 is w* closed and that a basis for Y_1 , 1-equivalent the usual unit vector basis of l_1 , is

$${x_{i(1)i(2)}: i(1), i(2) = 1, 2, \cdots} \cup {x_{2l}: l = 1, 2, \cdots} \cup {x}.$$

To define X_2 we iterate this construction in the following way. Let $x = \delta_{\omega^4} \in l_1(\omega^4)$ and define the sequences $\{x_{i(1)}: i(1) = 1, 2, \cdots\}$ and $\{x_{i(1)i(2)}: i(1), i(2) = 1, 2, \cdots\}$ as above. Note that

supp
$$x_{i(1)i(2)} \subset [1, \omega^4]^{(2)} - [1, \omega^4]^{(3)}$$

and we can use our procedure starting with $x_{i(1)i(2)}$ to define sequence $\{x_{i(1)i(2)i(3)}: i(3) = 1, 2, \cdots\}$ and $\{x_{i(1)i(2)i(3)i(4)}: i(3), i(4) = 1, 2, \cdots\}$. Precisely,

$$x_{i(1)i(2)i(3)}(\alpha) = \begin{cases} x_{i(1)i(2)}(\beta + \omega^2)y_{i(3)}(k) & \text{if } \alpha = \beta + \omega k \text{ for some} \\ \beta \in [1, \omega^4]^{(2)} \cup \{0\}, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$x_{i(1)i(2)i(3)i(4)}(\alpha) = \begin{cases} x_{i(1)i(2)i(3)}(\beta + \omega) & \text{if } \alpha = \beta + k, \text{ some } \beta \in [1, \omega^4]^{(1)} \text{ and } k \\ & \text{is the } i(4)\text{th element of } N_{i(3)}, \\ 0 & \text{otherwise.} \end{cases}$$

Let $Y_2 = \overline{\text{span}}\{x_t : t \text{ is a } n\text{-tuple of positive integers } 0 \le n \le 4\}$ and let $X_2 = C(\omega^4)/(Y_2)_{\perp}$. It is easy to see that Y_2 is w^* closed and that

 $\{x_t : t \text{ is a } n\text{-tuple}, 0 \le n \le 4, \text{ and if } t \text{ is of odd length, the last entry is even}\}$

is a basis for Y_2 equivalent to the usual unit vector basis of l_1 .

Continuing in this way, we define for each n a w* closed subspace

$$Y_n = \overline{\operatorname{span}}\{x_i : t \text{ is an } l\text{-tuple}, 0 \le l \le 2n\}$$

where $x = x_t$, t is the 0-tuple, is $\delta_{\omega^{2n}}$. Clearly Y_n is isometric to l_1 and $X_n = C(\omega^{2n})/(Y_n)_{\perp}$ is its predual.

Obviously $X = (\sum X_n)_{c_0}$ is isometric to $(\sum C(\omega^{2n}))_{c_0}/(\sum (Y_n)_{\perp})_{c_0}$, $(\sum C(\omega^{2n}))_{c_0}$ is isometric to $C_0(\omega^{\omega})$, and X^* is isometric to $(\sum Y_n)_{l_1}$ which is isometric to l_1 .

To show that X is not isomorphic to a subspace of $C(\alpha)$, for any $\alpha < \omega_1$, it is sufficient to show that for every $\delta > 0$ there is an integer n such that B_{X_n} does not contain a countable set A homeomorphic to a closed subset of $[1, \alpha]$ which is δ

norming, i.e.,

$$\sup\{|\langle a, x\rangle|: a \in A\} \ge \delta \|x\|.$$

This is equivalent to saying that $\delta^{-1} \overline{\text{co}} \pm A \not\supset B_{X_n^*} = B_{Y_n^*}$.

The main step in our argument is contained in the following lemma:

LEMMA. Suppose A is a countable $\sigma(l_1(\omega), C(\omega))$ closed subset of $B_{l_1}(\omega)$. Then for every $\varepsilon > 0$ there is a probability measure x, supp $x \subset [1, w)$, such that

$$||ax + by|| \ge (|a| + |b|||y||)(1 - \varepsilon) - |b|\varepsilon/4, \quad \forall a, b \in \mathbb{R}, \forall y \in A.$$

Before proving the lemma we will use it to show that X is not isomorphic to a subspace of $C(\alpha)$, for any $\alpha < \omega_1$.

Fix n and define for each l-tuple t, $0 \le l \le 2n$, an operator $R_t: l_1(\omega^{2n}) \to l_1(\omega^{2n})$ by

$$R_t \mu = \mu_{|\cup\{(\alpha_r^-,\alpha_r\}: r=1,2,\cdots,r_0\}},$$

where $\sup x_t = \{\alpha_r : r = 1, 2, \dots, r_0\}$ and $\alpha_r^- = \sup \{\gamma : \gamma < \alpha_n\}$ and if $\alpha_r \in [1, \omega^{2n}]^{(m)}$, for some $m, 1 \le m \le 2n, \gamma \in [1, \omega^{2n}]^{(m)} \cup \{0\}$. Note that if the length of t is even $R_t(Y_n) \subset Y_n$.

Also define, for each t, an operator T_t on $l_1(\omega^{2n})$ by

$$T_{\iota}\mu = \sum_{r=1}^{r_0} \mu(\alpha_r, \alpha_r) \delta_{\alpha_r}; \qquad T\mu = \mu[1, \omega^{2n}] \delta_{\omega^{2n}}.$$

It is easy to see that $T_t = T_t R_t$, $T_t(Y_n) \subset Y_n$, and if $t = (i(1), i(2), \dots, i(l))$, $T_t x_{i(1),\dots,i(j)} = x_t$, if $j \ge l$. We leave it to the reader to check that both R_t and T_t are w^* continuous.

Consider $U_1 = \sum_{l=1}^{\infty} T_{2l} + T[I - \sum_{l=1}^{\infty} R_{2l})$. (The infinite sums are convergent in the strong operator topology.) U_1 is w* continuous, $U_1(Y_n) \subset Y_n$, and if B is a subset of B_{Y_n} homeomorphic to $[1, \alpha]$, $U_1(B)$ is a countable w* closed subset of the measures supported on $\{\omega^{2n-1}l: l=1,2,\cdots\} \cup \{\omega^{2n}\}$. The space of measures on this set is clearly isometric to $l_1(\omega)$ and thus by the lemma there is an element y of norm one such that

$$||ay + bx|| \ge (1 - \varepsilon)(|a| + |b|||x||) - |b|\varepsilon/4$$

for all $a, b \in \mathbb{R}$, and $x \in U_1(B)$ and such that supp $y \subset \{\omega^{2n-1}l : l = 1, 2, \cdots\}$. Here ε is a fixed positive number.

Observe that

$$U_1(\{x_{i(1)}: i(1) = 1, 2, \cdots\}) = \{x_{i(1)}: 1(1) = 1, 2, \cdots\}$$

is norm dense in the probability measures supported on $\{\omega^{2n-1}l: l=1,2,\cdots\}$. Thus we can assume that $y=x_{j(1)}$, for some integer j(1). (Precisely speaking we should apply the lemma with some $\varepsilon' < \varepsilon$ and then choose j(1) such that $||x_{j(1)} - y|| < \varepsilon - \varepsilon'$.)

Next consider

$$U_2 = \sum_{l=1}^{\infty} T_{j(1),1,2l} + T_{j(1),1} \left(I - \sum_{l=1}^{\infty} R_{j(1),1,2l} \right).$$

Clearly U_2 is w* continuous and $U_2(Y_n) \subset Y_n$. As before $U_2(B)$ is a w* closed countable subset of a space isometric to $l_1(\omega)$ (namely, $\overline{\text{span}}(\{x_{j(1),1,2i}: i=1,2,\cdots\} \cup \{x_{j(1),1}\}))$ and thus by the lemma there is an element

$$y \in \overline{\text{span}}\{x_{j(1),1,2l}: l = 1, 2, \cdots\}, \quad ||y|| = 1,$$

such that

$$||ay + bx|| \ge (1 - \varepsilon)(|a| + |b| ||x||) - |b| \varepsilon/4$$

for all $a, b \in \mathbb{R}$ and $x \in U_2(B)$. Since

$$U_2(\{x_{j(1),1,i(1)}:i(1)=1,2,\cdots\})=\{x_{j(1),1,i(1)}:i(1)=1,2,\cdots\},$$

we can assume that $y = x_{j(1),1,j(3)}$, for some integer j(3).

In this way we find indices $j(1), j(3), \dots, j(2n-1)$ such that if

$$U_k = \sum_{l=1}^{\infty} T_{j(1),1,j(3),1,\dots,j(2k-3),1,2l}$$

$$+ T_{j(1),1,j(3),1,\dots,j(2k-3),1} \left(I - \sum_{l=1}^{\infty} R_{j(1),1,\dots,j(2k-3),1,2l} \right),$$

then

$$||ax_{j(1),1,j(3),1,\cdots,j(2k-1)} + bx|| \ge (1-\varepsilon)(|a|+|b|||x||)-|b|\varepsilon/4$$

for all $x \in U_k(B)$, $k = 1, 2, \dots, n$.

Let

$$S_k = T_{j(1),1,\dots,j(2k-1),1} + \sum_{l=1}^k U_l (I - R_{j(1),1,\dots,j(2l-1),1}),$$

 $k = 1, 2, \dots, n$. We claim that if

$$x_{j(1),1,\dots,j(2n-1),1} = \sum_{i=1}^{\infty} \lambda_i z_i, \quad \{z_i : i \in \mathbb{N}\} \subset B,$$

then

$$\sum_{i=1}^{\infty} |\lambda_{i}| \|R_{j(1),1,\cdots,j(2r-3),1}S_{k}(I - R_{j(1),1,\cdots,j(2r-1),1})z_{i}\| \ge 2(1-\varepsilon) - \sum_{i=1}^{\infty} |\lambda_{i}| \varepsilon/4,$$

for $r = 1, 2, \dots, k \ (R = I)$.

We will establish this claim by induction on k. If k = 1, $S_1(\sum_{i=1}^{\infty} \lambda_i z_i) = x_{j(1),1}$. By our choice of j(1)

$$||ax_{i(1)} + bU_1z_i|| \ge (1-\varepsilon)(|a| + |b|||U_1z_i||) - |b|\varepsilon/4,$$

for all $a, b \in \mathbb{R}$, $i \in \mathbb{N}$. Let $T_{j(1),1}z_i = \gamma_i x_{j(1),1}$ and note that since

$$(S_1 z_i)_{|\sup x_{i(1),1}} = T_{j(1),1} z_i$$

 $\sum_{i=1}^{\infty} \lambda_i \gamma_i = 1$. We have that $U_1 x_{j(1),1} = x_{j(1)}$, so that letting $a = -\gamma_i$ and b = 1, we get that

$$||U_{1}(I - R_{j(1),1})z_{i}|| = ||U_{1}z_{i} - U_{1}T_{j(1),1}z_{i}||$$

$$= ||U_{1}z_{i} - \gamma_{i}U_{1}x_{j(1),1}||$$

$$\geq (1 - \varepsilon)(|\gamma_{i}| + ||U_{1}z_{i}||) - \varepsilon/4.$$

Summing over i, we have that

$$\sum_{i=1}^{\infty} |\lambda_{i}| \|S_{1}(I - R_{j(1),1})z_{i}\| = \sum_{i=1}^{\infty} |\lambda_{i}| \|U_{1}(I - R_{j(1),1})z_{i}\|$$

$$\geq (1 - \varepsilon) \left(\sum_{i=1}^{\infty} |\lambda_{i}| |\gamma_{i}| + \sum_{i=1}^{\infty} |\lambda_{i}| \|U_{1}z_{i}\|\right) - \sum_{i=1}^{\infty} |\lambda_{i}| \varepsilon/4$$

$$\geq 2(1 - \varepsilon) - \sum_{i=1}^{\infty} |\lambda_{i}| \varepsilon/4,$$

since $\sum_{i=1}^{\infty} \lambda_i \gamma_i = 1$ and $x_{j(1)} = U_1 x_{j(1),1} = \sum_{i=1}^{\infty} \lambda_i U_1 z_i$.

Now inductively assume we have proved our claim for k-1. Because

$$S_{k-1}(I-R_{j(1),1,\cdots,j(2k-3),1})S_k+T_{j(1),1,\cdots,j(2k-3),1},$$

we have

$$R_{j(1),1,\dots,j(2r-3),1}S_{k-1}(I-R_{j(1),1,\dots,j(2r-1),1})$$

$$=R_{j(1),1,\dots,j(2r-3),1}S_{k}(I-R_{j(1),1,\dots,j(2r-1),1}),$$

for $r = 1, 2, \dots, k-1$ and thus we need only show that

$$\sum_{i=1}^{\infty} |\lambda_{i}| \|R_{j(1),1,\cdots,j(2k-3),1} S_{k} (I - R_{j(1),1,\cdots,j(2k-1),1}) \| \ge 2(1-\varepsilon) - \sum_{i=1}^{\infty} |\lambda_{i}| \varepsilon/4.$$

By the choice of j(2k-1),

$$||ax_{i(1),1,\cdots,i(2k-1)} + bU_kz_i|| \ge (1-\varepsilon)(|a|+|b|||U_kz_i||)-|b|\varepsilon/4.$$

As before let

$$T_{j(1),1,\dots,j(2k-1),1}z_i = (S_k z_i)_{|\operatorname{supp} x_{j(1),1,\dots,j(2k-1),1}}$$
$$= \gamma_i x_{j(1),1,\dots,j(2k-1),1}$$

and note that $\sum_{i=1}^{\infty} \lambda_i \gamma_i = 1$.

$$U_k x_{i(1),\dots,i(2k-1),1} = x_{i(1),1,\dots,i(2k-1)}$$

and if we choose $a = -\gamma_i$ and b = 1, we have that

$$|| U_k (I - R_{j(1),1,\dots,j(2k-1),1}) z_i || = || U_k z_i - \gamma_i U_k x_{j(1),\dots,j(2k-1),1} ||$$

$$\geq (1 - \varepsilon) (|\gamma_i| + || U_k z_i ||) - \varepsilon/4.$$

Summing over i we get

$$\sum_{i=1}^{\infty} |\lambda_{i}| \|U_{k}(I - R_{j(1),1,\dots,j(2k-1),1})z_{i}\|$$

$$\geq (1 - \varepsilon) \left(\sum_{i=1}^{\infty} |\lambda_{i}| |\gamma_{i}| + \sum_{i=1}^{\infty} |\lambda_{i}| \|U_{k}z_{i}\|\right) - \sum_{i=1}^{\infty} |\lambda_{i}| \varepsilon/4$$

$$\geq 2(1 - \varepsilon) - \sum_{i=1}^{\infty} |\lambda_{i}| \varepsilon/4,$$

because $\sum_{i=1}^{\infty} \lambda_i U_k z_i = x_{j(1),1,\dots,j(2k-1)}$. Observe that

$$R_{j(1),1,\cdots,j(2k-3),1}S_k(I-R_{j(1),1,\cdots,j(2k-1),1})=U_k(I-R_{j(1),1,\cdots,j(2k-1),1})$$

and thus the claim is proved.

Taking k = n we have that

$$\begin{split} \sum_{i=1}^{\infty} |\lambda_{i}| &\geq \sum_{i=1}^{\infty} |\lambda_{i}| \|S_{n}z_{i}\| \\ &\geq \sum_{i=1}^{\infty} |\lambda_{i}| \left[\sum_{r=1}^{n} \|R_{j(1),1,\dots,j(2r-3),1}S_{n}(I - R_{j(1),1,\dots,j(2r-1),1})z_{i}\| \\ &+ \|R_{j(1),1,\dots,j(2n-1),1}S_{n}z_{i}\| \right] \end{split}$$

$$\geq \sum_{r=1}^{n} \left[2(1-\varepsilon) - \sum_{i=1}^{\infty} |\lambda_i| \varepsilon/4 \right] + 1$$
$$= 2n(1-\varepsilon) + 1 - \sum_{i=1}^{\infty} |\lambda_i| \varepsilon n/4.$$

Hence

$$\sum_{i=1}^{\infty} |\lambda_i| \ge \frac{2n(1-\varepsilon)+1}{1+\varepsilon n/4}.$$

Because ε was arbitrary, it follows that the norming constant of X_n is at most 1/(2n+1). Thus $X = (\sum X_n)_{c_0}$ is not isomorphic to a subspace of $C(\alpha)$, for any $\alpha < \omega_1$.

PROOF OF THE LEMMA. By the Mazurkiewicz-Sierpinski theorem [6], A is homeomorphic to $[1, \omega^{\gamma} n]$, for some $\gamma < \omega_1$ and $n \in \mathbb{N}$. We will prove our result by induction on γ and n. Thus we will assume as our inductive hypothesis that for all $\beta < \gamma$, $n \in \mathbb{N}$, and $\varepsilon > 0$, if $A = \{x_{\alpha} : \alpha \leq \omega^{\beta} n\}$, where $x_{\alpha} \to \alpha$ is a homeomorphism, and if $\{y_n : n \in \mathbb{N}\}$ is a sequence of unit vectors of finite support with supp $y_n \cap \text{supp } y_m = \emptyset$, for $n \neq m$, then there is an element $z = \sum_{n=1}^{\infty} a_n y_n$, $a_n \geq 0$, $\sum_{n=1}^{\infty} a_n = 1$, $a_n \neq 0$ for only finitely many n, such that for all a, b and $\alpha \leq \omega^{\beta} n$,

$$||az + bx_{\alpha}|| \ge (1-\varepsilon)(|a|+|b|||x_{\alpha}||)-|b|\varepsilon/4.$$

First we will show that our inductive hypothesis actually will give us a sequence $\{z_i: i \in \mathbb{N}\}$ of disjointly supported convex combinations of $\{y_n: n \in \mathbb{N}\}$ such that for all $\{a_i: i \in \mathbb{N}\} \subset \mathbb{R}$, $b \in \mathbb{R}$ and $\alpha \leq \omega^{\beta} n$,

$$\left\| \sum a_i z_i + b x_{\alpha} \right\| \ge (1 - \varepsilon) \left(\sum |a_i| + |b| \|x_{\alpha}\| \right) - |b| \varepsilon/4.$$

Let $\varepsilon_i \downarrow 0$, $\sum_{i=1}^{\infty} \varepsilon_i < \varepsilon/2$. By applying the inductive hypothesis for ε_i we can find a sequence $\{z_i : i \in \mathbb{N}\}$ such that supp z_i is finite, supp $z_i \cap \text{supp } z_i = \emptyset$, $i \neq j$, and for all $a, b \in \mathbb{R}$ and $\alpha \leq \omega^{\beta} n$,

$$||az_i + bx_\alpha|| \ge (1 - \varepsilon_i)(|a| + |b|||x_\alpha||) - |b|\varepsilon_i/4.$$

It follows that

$$\begin{aligned} \|a_{i}z_{i} + bx_{\alpha|\operatorname{supp}z_{i}}\| &\geq (1 - \varepsilon_{i})(|a_{i}| + |b| \|x_{\alpha}\|) - |b| \varepsilon_{i}/4 - |b| \|x_{\alpha|\operatorname{supp}z_{i}}c\| \\ &= (1 - \varepsilon_{i})(|a_{i}| + |b| \|x_{\alpha|\operatorname{supp}z_{i}}\|) \\ &- |b| \varepsilon_{i}/4 - \varepsilon_{i} \|b\| \|x_{\alpha|\operatorname{supp}z_{i}}c\|. \end{aligned}$$

Summing over i we get that

$$\left\| \sum_{i=1}^{\infty} a_i z_i + b x_{\alpha} \right\| \ge \sum_{i=1}^{\infty} (1 - \varepsilon_i) (|a_i| + |b| ||x_{\alpha| \text{supp } z_i}||)$$

$$+ |b| ||x_{\alpha| (\cup \{\text{supp } z_i : i \in \mathbb{N}\})^c}|| - |b| \sum_{i=1}^{\infty} \varepsilon_i ||x_{\alpha}|| - |b| \sum_{i=1}^{\infty} \varepsilon_i /4$$

$$\ge (1 - \varepsilon) \left(\sum_{i=1}^{\infty} |a_i| + |b| ||x_{\alpha}|| \right) - |b| ||x_{\alpha}|| \varepsilon /2 - |b| \varepsilon /8$$

$$\ge (1 - \varepsilon) \left(\sum_{i=1}^{\infty} |a_i| + |b| ||x_{\alpha}|| \right) - |b| \varepsilon /4.$$

The inductive hypothesis is obvious for $\gamma = 0$. Suppose $A = \{x_{\alpha} : \alpha \leq \omega^{\gamma}\}$ for some $\gamma \geq 1$. Choose n_0 such that $||x_{\omega^{\gamma}[n_0,\omega)}|| < \varepsilon^3/128$ and assume (without loss of generality) that supp $y_l \subset [n_0, \omega)$ for all l. Let

$$A_1 = \{\alpha : ||x_{\alpha|\text{supp }y_1}|| \ge \varepsilon^3/64\}.$$

 A_1 is w* closed and does not contain ω^{γ} . Hence by the inductive hypothesis there are elements $\{z_{1i}: i \in \mathbb{N}\}$ which are finite convex combinations of $\{y_n: n > 1\}$, disjointly supported, and for all $\alpha \in A_1$,

$$\left\| \sum_{i=1}^{\infty} a_i z_{1i} + b x_{\alpha} \right\| \ge (1 - \varepsilon^3 / 64) \left(\sum_{i=1}^{\infty} |a_i| + |b| \|x_{\alpha}\| \right) - |b| \varepsilon^3 / 512.$$

Let $A_2 = \{\alpha : ||x_{\alpha|\text{supp}z_{11}}|| \ge \varepsilon^3/64\}$ and as above let $\{z_{2i} : i \in \mathbb{N}\}$ be a sequence of finite convex combinations of $\{z_{1i} : i > 1\}$ which are disjointly supported and satisfy

$$\left\| \sum_{i=1}^{\infty} a_i z_{2i} + b x_{\alpha} \right\| \ge (1 - \varepsilon^3 / 64) \left(\sum_{i=1}^{\infty} |a_i| + |b| \|x_{\alpha}\| \right) - |b| \varepsilon^3 / 512$$

for all $\alpha \in A_2$.

By repeating this argument $l = 4/\varepsilon - 1$ times (we may assume $4/\varepsilon \in \mathbb{N}$), we get elements $\{z_{ji} : i \in \mathbb{N}, j = 0, 1, 2, \dots, l\}$ (let $y_i = z_{0i}, i = 1, 2, \dots$) such that

- (a) $\{z_{ji}: i \in \mathbb{N}\}\$ is a sequence of finite convex combinations of $\{z_{j-1,i}: i > 1\}$,
- (b) supp $z_{ii} \cap \text{supp } z_{jk} = \emptyset$, $i \neq k$,
- (c) supp $z_{ii} \cap \text{supp } z_{i-1,1} = \emptyset$, $\forall i \in \mathbb{N}, j = 1, 2, \dots, l$,
- (d) if $\alpha \in A_i = \{\alpha : ||x_{\alpha|\operatorname{supp} z_{i-1,1}}|| \ge \varepsilon^3/64\},$

$$\left\|\sum_{i=1}^{\infty} a_i z_{ji} + b x_{\alpha}\right\| \ge \left(1 - \varepsilon^3 / 64\right) \left(\sum_{i=1}^{\infty} |a_i| + |b| \|x_{\alpha}\|\right) - |b| \varepsilon^3 / 512.$$

Let $z = \frac{1}{4} \varepsilon \sum_{j=0}^{l} z_{j,1}$ and fix $\alpha \leq \omega^{\gamma}$:

$$\|az + bx_{\alpha}\| = \left\| \frac{a\varepsilon}{4} \sum_{j=0}^{l} z_{j1} + bx_{\alpha} \right\|$$

$$= \left\| \frac{a\varepsilon}{4} \sum_{j=0}^{l_{0}-2} z_{j1} + bx_{\alpha|\cup\{\text{supp } z_{j1}: j \le j_{0}-2\}} \right\|$$

$$+ \left\| \frac{a\varepsilon}{4} z_{j_{0}-1,1} + bx_{\alpha|\sup z_{j_{0}-1,1}} \right\|$$

$$+ \left\| \frac{a\varepsilon}{4} \sum_{j=j_{0}}^{l} z_{j1} + bx_{\alpha|(\cup\{\text{supp } z_{j1}: j < j_{0})\}^{c}} \right\|,$$

where j_0 is the first integer j for which $\alpha \in A_j$. For $j \le j_0 - 2$, $||x_{\alpha|supp\cdot z_{j1}}|| < \varepsilon^3/64$, so that the first term is larger than

$$(j_0-1)\frac{|a|\varepsilon}{4}-(j_0-1)\frac{|b|\varepsilon^3}{64}$$
.

For $j \ge j_0$, each z_{i1} is a convex combination of $\{z_{j_0,i}: i > 1\}$, and thus by (d), the last term is larger than

$$(1 - \varepsilon^{3}/64) \left(\frac{|a|\varepsilon}{4} (l - j_{0} + 1) + |b| \|x_{\alpha|(\cup\{\text{supp } z_{j_{1}}: j < j_{0})\}\varepsilon}\| \right)$$
$$- \frac{|b|\varepsilon^{3}}{64} \|x_{\alpha|\cup\{\text{supp } z_{j_{1}}: j < j_{0}\}}\| - \frac{|b|\varepsilon^{3}}{512}.$$

Finally,

$$\left\| \frac{a\varepsilon}{4} \, z_{j_0-1,\,1} + b x_{\alpha \mid \text{supp } z_{j_0-1,1}} \right\| \ge - \frac{|a|\varepsilon}{4} + |b| \|x_{\alpha \mid \text{supp } z_{j_0-1,1}} \|.$$

Hence

$$\|az + bx_{\alpha}\| \ge \frac{|a|\varepsilon}{4} (j_{0} - 1) - \frac{|b|\varepsilon^{3}}{64} (j_{0} - 1) - \frac{|a|\varepsilon}{4} + |b| \|x_{\alpha|\sup z_{j_{0}-1,1}}\|$$

$$+ (1 - \varepsilon^{3}/64) \left(\frac{|a|\varepsilon}{4} (l - j_{0} + 1) + |b| \|x_{\alpha|(\cup\{\sup z_{j_{1}:j < j_{0}}))^{\varepsilon}}\| \right)$$

$$- \frac{|b|\varepsilon^{3}}{64} \|x_{\alpha|\cup\{\sup z_{j_{1}:j < j_{0}}\}}\| - \frac{|b|\varepsilon^{3}}{512}$$

$$\ge \frac{|a|\varepsilon}{4} (l - 1) (1 - \varepsilon^{3}/64) + |b| (1 - \varepsilon^{3}/64) \|x_{\alpha|(\cup\{\sup z_{j_{1}:j < j_{0}-1}))^{\varepsilon}}\|$$

$$-\frac{|b|\varepsilon^{3}}{64}(j_{0}-1) - \frac{|b|\varepsilon^{3}}{64} \|x_{\alpha}\| - \frac{|b|\varepsilon^{3}}{512}$$

$$\geq |a|(1-\varepsilon/2)(1-\varepsilon^{3}/64) + |b|(1-\varepsilon^{3}/64) \|x_{\alpha}\|$$

$$-|b|(1-\varepsilon^{3}/64) \|x_{\alpha}|_{\cup(\sup z_{j_{1}}:j< j_{0}-1)}\| - \frac{|b|\varepsilon^{3}}{64}(j_{0}+1)$$

$$\geq (1-\varepsilon)|a| + (1-\varepsilon)|b| \|x_{\alpha}\| - \frac{|b|\varepsilon^{3}}{64}(j_{0}-1) - \frac{|b|\varepsilon^{3}}{64}(j_{0}+1)$$

$$\geq (1-\varepsilon)|a| + (1-\varepsilon)|b| \|x_{\alpha}\| - |b|\varepsilon^{2}/8$$

$$\geq (1-\varepsilon)(|a|+|b| \|x_{\alpha}\|) - |b|\varepsilon/4,$$

establishing the lemma for γ . Clearly a similar argument will yield the case n > 1.

Finally, we wish to show that X is not isomorphic to a complemented subspace of any C(K) space. We will accomplish this by showing that the l_1 -predual Z constructed (beginning with the one dimensional space) by Benyamini and Lindenstrauss [3] is isomorphic to a complemented subspace of X. Since Z is not complemented in a C(K) space, the result will follow.

Suppose that in our sequence $\{y_{2j-1}: j=1,2,\cdots\}$ we have $y_1=\frac{1}{2}\delta_1+\frac{1}{2}\delta_2$, $y_3=\frac{2}{3}\delta_1+\frac{1}{3}\delta_2$, and $y_5=\frac{1}{3}\delta_1+\frac{2}{3}\delta_2$. (These vectors may not have been in our original sequence, but we can assume they are without affecting the preceding argument.) In Y_n consider the subspace

 $Z_n = \overline{\text{span}}\{x_i : t \text{ is an } l\text{-tuple}, \ 0 < l < 2n, \text{ with } l \text{ odd, all of whose odd}$ entries except the last are 1, 3, or 5, and the last is either 2 or 4}.

(Recall that $y_2 = \delta_1$, $y_4 = \delta_2$.) It is easy to see that Z_n is w^* closed and isometric to l_1 . (The defining set given above is a basis.) Also we leave it to the reader to check (by induction) that Z_n is w^* isometric to the dual of the *n*th space of Benyamini and Lindenstrauss.

It remains to show that Z_n is w* complemented in Y_n with the norm of the projection independent of n. To do this we employ a selection theorem for L_1 -preduals (theorem II.4.17 of [5]). Define $\psi: B_{Y_n} \to 2^{B_{Z_n}}$ by

$$\psi(y) = y_{|\operatorname{supp} Z_n} + \|y_{|(\operatorname{supp} Z_n)^c}\| B_{Z_n}$$

where supp $Z_n = \bigcup \{ \sup z : z \in Z_n \}$. It is easy to see that ψ is lower semi-continuous (in the w* topology), symmetric, and convex. Therefore, there is a convex, symmetric, w* continuous selection $P: B_{Y_n} \to B_{Z_n}$ such that $P(y) \in \psi(y)$

for all $y \in B_{Y_n}$. Clearly P extends to a norm one w^* continuous linear operator from Y_n to Z_n which is a projection onto Z_n .

REMARK. It is possible but messy to explicitly write down a projection from Y_n to Z_n . For example for n = 2, define

$$P_2 = (T_1 + T_4) \left(I - \sum_{k=1}^{2} \sum_{l=1}^{3} \sum_{i(2)=1}^{\infty} R_{(2l-1),i(2),2k} \right) + \sum_{k=1}^{2} \sum_{l=1}^{3} \sum_{i(2)=1}^{\infty} T_{(2l-1),i(2),2k}.$$

REFERENCES

- 1. D. E. Alspach, Quotients of c_0 are almost isometric to subspaces of c_0 , Proc. Amer. Math. Soc. 76 (1979), 285-288.
- Y. Benyamini, An extension theorem for separable Banach spaces, Israel J. Math. 29 (1978), 24-30.
- 3. Y. Benyamini and J. Lindenstrauss, A predual of l_1 which is not isomorphic to a C(K) space, Israel J. Math. 13 (1972), 246-254.
- 4. W. B. Johnson and M. Zippin, On subspaces of quotients of $(\Sigma G_n)_{i_p}$ and $(\Sigma G_n)_{c_0}$, Israel J. Math. 13 (1972), 311-316.
- 5. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Springer-Verlag Lecture Notes in Mathematics 338, 1973.
- 6. S. Mazurkiewicz and W. Sierpinski, Contribution à la topologie des ensembles denomrables, Fund. Math. 1 (1920), 17-27.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS. 02139 USA